a2 United States Patent

US008990831B2

(10) Patent No.: US 8,990,831 B2

Elnozahy et al. 45) Date of Patent: *Mar. 24, 2015
(54) FRAMEWORK FOR SCHEDULING USPC oot 719/310; 719/106
MULTICORE PROCESSORS (58) Field of Classification Search
CPC ... GOGF 9/541; GOG6F 9/547; GOGF 9/54;
(75) Inventors: Elmootazbellah Nabil Elnozahy, GO6F 9/4881
Austin, TX (US); Heather Lynn USPC ittt 719/328, 330
Hanson, Austin, TX (US); James Lyle See application file for complete search history.
Peterson, Austin, TX (US); Freeman
Leigh Rawson, ITI, Austin, TX (US); (56) References Cited
Malcolm Scott Ware, Austin, TX (US) US. PATENT DOCUMENTS
(73) Assignee: International Business Machines 6,560,628 BL* 52003 Murata ..o 718/103
Corporation, Armonk, NY (US) 7,028,167 B2 4/2006 Soltis, Jr. et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 341 days.]]]
Mohan Rajagopalan, Thread Scheduling for multi-core Platforms,
This patent is subject to a terminal dis- 2007.*
claimer. (Continued)
(21) Appl. No.: 13/413,768
Primary Examiner — Lechi Truong
(22) Filed: Mar. 7, 2012 (74) Attorney, Agent, or Firm — Garg Law Firm, PLLC;
Rakesh Garg; William J. Stock
(65) Prior Publication Data
US 2012/0227048 A1l Sep. 6, 2012 7 ABSTRACT
A method for a framework for scheduling tasks in a multi-
Related U.S. Application Data core processor or multiprocessor system is provided in the
illustrative embodiments. A thread is selected according to an
(63) Continuation of application No. 12/789,015, filed on order in a scheduling discipline, the thread being a thread of
May 27, 2010, now Pat. No. 8,510,749. an application executing in the data processing system, the
thread forming the leader thread in a bundle of threads. A
(1) Int. Cl. value of a core attribute in a set of core attributes is determined
GOG6F 3/00 (2006.01) according to a corresponding thread attribute in a set of thread
Go6l’ 9/46 (2006.01) attributes associated with the leader thread. A determination
GO6F 9/48 (2006.01) is made whether a second thread can be added to the bundle
GOGF 9/54 (2006.01) such that the bundle including the second thread will satisfy a
GOG6F 9/50 (2006.01) policy. If the determining is affirmative, the second thread is
(52) US.CL added to the bundle. The bundle is scheduled for execution
CPC ..o GOG6F 9/4893 (2013.01); GO6F 9/54 using a core of the multi-core processor.

(2013.01); GOGF 9/4881 (2013.01); GO6F
9/5027 (2013.01); Y02B 60/144 (2013.01)

‘SELECT AFIRST THREAD ACCORDING TO A
‘SCHEDULING DISCIPLL

‘CREATE A BUNDLE OF THREADS WITH THE FIRST
THREAD AS THE LEADER
54

DETERNINE GORE ATTRIBUTES ACCORDING TO
“THE LEADER THREAD'S ATTRIBUTES

{IN THE DISCIPLINE ORDER) WHOSE
ATTRIBUTE ARE WITHIN A TOLERANCE OF
THE CORE ATTRIBUTES SET BY THE

BUNDLE
SUFFICIENT TO UTILIZE THE CORE AT
A DESIGNATED UTILIZATION?
812
MORE
—ves. THREADS IN THE DISCIPLINE ORDERT
g4

'SCHEDULE THE BUNGLE FOR EXEGLITION
ONTHE CORE
516

12 Claims, 8 Drawing Sheets

ISCIPLNE
52

a6

ANOTHER

s

"SELECT THE THREAD TO ADD 10
THE BUNDLE OF THREADS
810

No

NO

US 8,990,831 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

7,246,353 B2 *
7,398,374 B2
7,451,459 B2 *
7,487,317 B1*
2005/0223382 Al
2008/0074433 Al*
2008/0184233 Al
2009/0164399 Al*
2009/0201935 Al

7/2007
7/2008
11/2008
2/2009
10/2005
3/2008
7/2008
6/2009
8/2009

Forinetal.

Delano

Glassetal.
Fedorova et al.

Lippett

Jiaoetal.occo..

Norton et al.

Bell etal.

Hass et al.

2009/0307708 Al 12/2009 Archer et al.
2010/0017804 Al 1/2010 Gupta et al.
2010/0077185 Al 3/2010 Gopalan et al.
2010/0100712 Al 4/2010 Mejdrich et al.

"""" 718/100 2010/0146513 Al 6/2010 Song
....... ;}?ﬁég OTHER PUBLICATIONS
145/522 Elnozahy et al; A Framework for Scheduling Multicore Processors

Based on Different User Thread Attributes, May 20, 2010, 1-13.

......... 706/25

* cited by examiner

U.S. Patent Mar. 24, 2015 Sheet 1 of 8 US 8,990,831 B2

FIG. 1 * * * * JTAG/I2C 134

PROCESSOR] [ProcEssor] [Processor] [PRocEssor MEMORY
101 102 103 104 191
l | |]
ATTN SIGNAL _ ¥
SERVICE
PROCESSOR
<« SYSTEM BUS 106 > 135
_ |
MEMORY o PCIBUS 195
CONCTARC%LEER/ BRIDGE l_
o 110 ISA Y
— BUS
196 NVRAM
SERVICE PROCESSOR T 192
MAILBOX INTERFACE AND | *
ISA BUS ACCESS
LOCAL PASSTHROUGH gg’l'gg’; OP PANEL
MEMORY 194 190
160 183 —
PCI
LOCAL
BUS
M'-EOMCC?I'?-Y PCI HOST PCF','CTIO' /0 PCI 110
me = BRIDGE BRIDGE [==PC BUS 133mupl SLOT flmml ADAPTER
161 130 176 136
132
PCI
PCI BUS
LOCAL 118 110 PCI /O
LOCAL BUS — SLOT fmd ADAPTER
MEMORY 170 120
o PCI HOST
1o (— BRIDGE
114
1o PCI /O
PCI BUS SLOT fmd ADAPTER
19 7 121
LOCAL .
MEMORY
LOCAL PCIBUS 1o PCI /O
163 126
BUS = SLOT jmml ADAPTER
123 TO- 172 128
PCI HOST _ﬁ PCP'(;O
- BR1'2DZGE BRIDGE
=4 124 10 PCI /O
PCI BUS SLOT fmd ADAPTER
) 127 173 129
BUS PCI
112 LOCAL PC1' 4I'1US 1o GRAPHICS
BUS == SLOT fmed ADAPTER
141 TO- 174 148
q PCI HOST d PCF',CTIO
DATA PROCESSING - BFi'E(?E BRIDGE
SYSTEM — 142 1o HARD DISK
100 I PCI BUS SLOT jmsl ADAPTER
145 175 149
HARD DISK
150

U.S. Patent Mar. 24, 2015 Sheet 2 of 8 US 8,990,831 B2
FIG. 2
PARTITION 203 PARTITION 205 PARTITION 207 PARTITION 209
OPERATING OPERATING OPERATING OPERATING
SYSTEM SYSTEM SYSTEM SYSTEM
202 204 206 208 SERVICE
PROCESSOR
290
PARTITION PARTITION PARTITION PARTITION
FIRMWARE FIRMWARE FIRMWARE FIRMWARE
211 213 215 217
S S " S
PLATFORM FIRWARE 210 |
PROCESSOR PROCESSOR PROCESSOR PROCESSOR 1/0 ADAPTER 11O ADAPTER
232 234 236 238 248 250
/0 ADAPTER /0 ADAPTER
252 254
230
STORAGE NVRAM 1/0 ADAPTER 11O ADAPTER
270 298 256 258
MEMORY MEMORY MEMORY MEMORY /0 ADAPTER /0 ADAPTER
240 242 244 246 260 262
HARDWARE
MANAGEMENT u
LOGICAL PARTITIONED COE;;JLE
PLATFORM —

200

U.S. Patent Mar. 24, 2015

Sheet 3 of 8 US 8,990,831 B2
FIG. 3
PROCESSOR/ PROCESSOR/
CORE CORE
ATTRIBUTES ATTRIBUTES
314 316
'.' .l '.' ‘l
! 3 ! 3
i Y B Y
{ \ { Y
PROCESSOR/ CORE PROCESSOR/ CORE
304 306
DATA PROCESSING SYSTEM 302
SCHEE’;LER THREADS
U 310
4 i ;
) h \ .
‘l l' ‘\ ’
‘I l’ “ "
[}] LY r
\ ! !
‘l l' ‘\ d
SCHEDULING THREAD
DISCIPLINE ATTRIBUTES
312 318

U.S. Patent Mar. 24, 2015 Sheet 4 of 8 US 8,990,831 B2

FIG. 4

CONSTRAINT/
COMPATIBILITY MODEL
408

!

SCHEDULING FRAMEWORK

402
THREAD ATTRIBUTES T THREAD SCHEDULE
406 > > 410
— THREAD ORDERING QUEUE -
403

I

SCHEDULING DISCIPLINE
404

O
N

PRI;)LF\E;ITY // // // // //
/ /S /S S/ /
///// / / L/
L~ //// %ﬂg
% V%
510 \/ 4 /|
%
/|
(0,2,4) /| //
//
Y/

FREQUENCY
504

U.S. Patent Mar. 24, 2015 Sheet 5 of 8 US 8,990,831 B2

FIG. 6 < START ’

Y
‘ SELECT A FIRST THREAD ACCORDING TO A

SCHEDULING DISCIPLINE
802

Y

CREATE A BUNDLE OF THREADS WITH THE FIRST
THREAD AS THE LEADER
604

A 4

DETERMINE CORE ATTRIBUTES ACCORDING TO
THE LEADER THREAD’S ATTRIBUTES
606

»
>
\

ANOTHER
THREAD
(IN THE DISCIPLINE ORDER) WHOSE
ATTRIBUTE ARE WITHIN A TOLERANCE OF
THE CORE ATTRIBUTES SET BY THE
LEADER THREAD?
608

YES

4

SELECT THE THREAD TO ADD TO
THE BUNDLE OF THREADS
610

BUNDLE
SUFFICIENT TO UTILIZE THE CORE AT
A DESIGNATED UTILIZATION?
612

NO

THREADS IN THE DISCIPLINE ORDER?

SCHEDULE THE BUNDLE FOR EXECUTION
ON THE CORE
616

U.S. Patent

FIG. 7

700

Mar. 24, 2015 Sheet 6 of 8

(START ’

A 4

SELECT A FIRST THREAD ACCORDING TO A
SCHEDULING DISCIPLINE
702

A 4

CREATE A BUNDLE OF THREADS WITH THE FIRST
THREAD AS THE LEADER
704

Y

DETERMINE CORE ATTRIBUTES ACCORDING TO
THE LEADER THREAD'S ATTRIBUTES
706

.
>
}

ANOTHER THREAD

IN THE DISCIPLINE ORDER THAT CAN

EXECUTE WITH THE CORE ATTRIBUTES
SET BY THE LEADER THREAD?

708

YES
A 4

SELECT THE THREAD TO ADD TO
THE BUNDLE OF THREADS
yalo)

BUNDLE
SUFFICIENT TO UTILIZE THE CORE AT

A DESIGNATED UTILIZATION?
nz

NO

MORE
THREADS IN THE DISCIPLINE ORDER?
714

US 8,990,831 B2

SCHEDULE THE BUNDLE FOR EXECUTION
ON THE CORE
e

END

U.S. Patent Mar. 24, 2015 Sheet 7 of 8 US 8,990,831 B2

\ SELECT A FIRST THREAD ACCORDING TO A
SCHEDULING DISCIPLINE
802

v

CREATE A BUNDLE OF THREADS WITH THE FIRST
THREAD AS THE LEADER
804

Co
(=)
(e}

A 4

DETERMINE CORE ATTRIBUTES ACCORDING TO
THE LEADER THREAD'S ATTRIBUTES

IN THE DISCIPLINE ORDER THAT
HAS A DIVERSE PROPERTY AS COMPARED
TO THE LEADER THREAD (AND/OR) OTHER
MEMBERS OF
THE BUNDLE?
808

YES
4

SELECT THE THREAD TO ADD TO
THE BUNDLE OF THREADS
810

BUNDLE
SUFFICIENT TO UTILIZE THE CORE AT
A DESIGNATED UTILIZATION?
812

NO

MORE
THREADS IN THE DISCIPLINE ORDER?
814

SCHEDULE THE BUNDLE FOR EXECUTION
ON THE CORE
816

U.S. Patent

FIG. 9

<o}
=]
e}

Mar. 24, 2015 Sheet 8 of 8

‘ START ’

A 4

SELECT A FIRST THREAD ACCORDING TO A
SCHEDULING DISCIPLINE
902

y

CREATE A BUNDLE OF THREADS WITH THE FIRST
THREAD AS THE LEADER
904

Y

DETERMINE CORE ATTRIBUTES ACCORDING TO
THE LEADER THREAD'S ATTRIBUTES
906

THREAD IN THE DISCIPLINE
ORDER THAT SATISFIES A COMPATIBILITY
POLICY OR CONSTRAINT FOR
THE BUNDLE?
908

YES

4

SELECT THE THREAD TO ADD TO
THE BUNDLE OF THREADS
910

BUNDLE
SUFFICIENT TO UTILIZE THE CORE AT
A DESIGNATED UTILIZATION?
912

NO

MORE
THREADS IN THE DISCIPLINE ORDER?
914

NO

«

Y

SCHEDULE THE BUNDLE FOR EXECUTION
ON THE CORE
916

US 8,990,831 B2

US 8,990,831 B2

1
FRAMEWORK FOR SCHEDULING
MULTICORE PROCESSORS

The present application is a CONTINUATION of and
claims priority to the parent application Ser. No. 12/789,015,
filed on May 27, 2010.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to an improved data
processing system, and in particular, to a computer imple-
mented method for improving resource utilization in data
processing systems. Still more particularly, the present inven-
tion relates to a computer implemented method for a frame-
work for scheduling tasks in multi-core processor or multi-
processor data processing systems.

2. Description of the Related Art

Data processing systems include processors for perform-
ing computations. A processor can include multiple process-
ing cores. A core is a processor or a unit of a processor
circuitry that is capable of operating as a separate processing
unit. Some data processing systems can include multiple
processors. A data processing environment can include data
processing systems including a single single-core processor,
multi-core processors, and multiprocessor configurations.

A multiprocessor or multi-core data processing environ-
ment can be configured such that a multiple threads can be
scheduled for execution on one processor or core during a
given period. Simultaneous multi-threading (SMT) is a tech-
nology that allows multiple threads of a process to execute
simultaneously. When multiple SMT threads execute in a
core, they all have to run at the same frequency and use the
same voltage.

A software thread is a thread of execution resulting from a
fork of a computer program into two or more concurrently
running tasks. An application executing in a data processing
system spawns threads that are executed by a processor in the
data processing system. An operating system schedules soft-
ware threads to run on the processors by assigning a software
thread to a hardware or SMT thread. The implementation of
threads and processes differs from one operating system to
another, but in most cases, a thread is contained inside a
process associated with the application. Multiple threads can
exist within the same process and share resources such as
memory.

Different cores in a multi-core processor and different pro-
cessors in a multiprocessor system can operate using different
configurations. For example, a core or a processor can be
operated at different voltages, frequencies. However, some
constraints may be imposed by the limitation of existing
hardware, for instance, all SMT threads running in the same
core must run at the same speed. The voltage, frequency, and
other characteristics can be configured for a core or a proces-
sor depending on the tasks to be executed, or other consider-
ations, such as performance or energy consumption of the
cores or the processors.

SUMMARY OF THE INVENTION

The illustrative embodiments provide a method for a
framework for scheduling tasks in a multi-core processor or
multiprocessor system.

An embodiment selects a first thread according to an order
in a scheduling discipline, the first thread being a thread of an
application executing in the data processing system. The first
thread forms the leader thread in a bundle of threads. A value

10

40

45

50

60

2

is determined of a core attribute in a set of core attributes
according to a corresponding thread attribute in a set of thread
attributes associated with the leader thread. A determination
is made whether a second thread can be added to the bundle of
threads such that the bundle including the second thread will
satisty a policy.

Ifthe determining is affirmative, the second thread is added
to the bundle. The bundle is scheduled for execution using a
core of the multi-core processor.

In another embodiment, the policy is a compatibility
policy. The policy includes determining whether a thread
attribute in the set of thread attributes of the second thread is
within a tolerance value of a corresponding core attribute in
the set of the core attributes as set by the leader thread.

In another embodiment, the policy is a compatibility
policy. The policy includes determining whether a value of a
thread attribute in the set of thread attributes of the second
thread is at most equal to a value of a corresponding core
attribute in the set of the core attributes as set by the leader
thread.

In another embodiment, the policy is a compatibility
policy. The policy includes determining whether a value of a
thread attribute in the set of thread attributes of the second
thread is identical to a value of a corresponding core attribute
in the set of the core attributes as set by the leader thread.

In another embodiment, the policy is a compatibility
policy. The policy includes determining whether a thread
attribute in the set of thread attributes of the second thread is
diverse from a corresponding thread attribute of another
thread in the bundle of threads.

Another embodiment further determines whether the
bundle includes a number of threads that will utilize a
resource in the data processing system at a designated utili-
zation level, wherein the executing the bundle is responsive to
the bundle including such number of threads.

In an embodiment, the resource is a core in the multi-core
processor.

Another embodiment further determines according to the
order of the scheduling discipline whether a third thread can
be added to the bundle of threads such that the bundle includ-
ing the third thread will satisfy the policy. If the bundle
satisfies the policy, the third thread is added to the bundle.

In an embodiment, the core attribute is voltage, frequency,
or simultaneous multi-threading (SMT) level, at which the
core will operate for executing the bundle of threads. In an
embodiment, the order is an order of priority of threads.

In another embodiment, the scheduling discipline is round-
robin scheduling.

In an embodiment, the data processing system having the
multi-core processor is a data processing system having a
multiprocessor system. A core of the multi-core processor is
a separate processor.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself;
however, as well as a preferred mode of use, further objectives
and advantages thereof, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 depicts a block diagram of a data processing system
in which the illustrative embodiments may be implemented is
depicted;

US 8,990,831 B2

3

FIG. 2 depicts a block diagram of an example logical
partitioned platform in which the illustrative embodiments
may be implemented;

FIG. 3 depicts a block diagram of an example data process-
ing system with respect to which an illustrative embodiment
may be implemented;

FIG. 4 depicts a block diagram of a scheduling framework
for scheduling threads in a multi-core processor system in
accordance with an illustrative embodiment;

FIG. 5 depicts a block diagram of an example ordering
structure in a scheduling framework in accordance with an
illustrative embodiment;

FIG. 6 depicts a flowchart of one example scheduling
operation of'a framework for scheduling threads in multi-core
processors in accordance with an illustrative embodiment;

FIG. 7 depicts a flowchart of another example scheduling
operation of'a framework for scheduling threads in multi-core
processors in accordance with an illustrative embodiment;

FIG. 8 depicts a flowchart of another example scheduling
operation of'a framework for scheduling threads in multi-core
processors in accordance with an illustrative embodiment;
and

FIG. 9 depicts a flowchart of another example scheduling
operation of'a framework for scheduling threads in multi-core
processors in accordance with an illustrative embodiment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

A scheduler is used for scheduling software threads on a
core by associating each one of them to an SMT thread that
executes on the core. A scheduler employs a scheduling dis-
cipline for performing the scheduling. A scheduling disci-
pline is a methodology for selecting one or more threads from
a set of threads, and ordering the selected threads in some
logical order. Some commonly used scheduling disciplines
are round-robin scheduling, priority based scheduling, and
multi-level feedback queue (MLFQ) based scheduling.

The invention recognizes that modern systems introduce
many parameters that must be taken into account in thread
scheduling. Frequency, voltage, the number of SMT’s run-
ning on a single core, and interactions among threads are
some examples of new parameters that modern systems intro-
duce. The invention further recognizes that the goals of thread
performance, system throughput, and energy consumption
may require inconsistent settings for these parameters. For
instance, thread performance requires operation at a high
frequency and a small number of SMT’s per core. Operating
atahigh frequency allows the processor to run at ahigh speed,
which improves thread performance but may lead to ineffi-
ciencies in energy consumption because the voltage has to be
set to a higher level. Furthermore, a small number of SMT’s
per core reduces resource contention and improves perfor-
mance but may yield poor system throughput, and vice versa.

Another example of problems recognized by the invention
is the level of concurrency a thread may tolerate within a
certain core, expressed by the number of SMT’s that run
simultaneously with said thread. It may be desirable thus to
essentially not run in SMT mode for threads that may be
impacted by resource contention. Another thread, however,
may have more tolerance to resource contention and it is
profitable to schedule it with a large number of other threads
that can tolerate high contention on the same core with a high
SMT mode.

10

15

20

25

30

40

45

50

55

60

65

4

As another example of problems recognized by the inven-
tion, hardware threads in a single core must execute at a
common frequency. This imposes a restriction that must be
obeyed by the scheduler.

The illustrative embodiments used to describe the inven-
tion generally address and solve the above-described prob-
lems and other problems related to scheduling threads in a
multi-core processor or multiprocessor system. The illustra-
tive embodiments of the invention provide a method for a
framework for scheduling threads in a multi-core processor or
multiprocessor system.

The illustrative embodiments are described with respect to
data, data structures, and identifiers only as examples. Such
descriptions are not intended to be limiting on the invention.
Generally, the invention is not limited to any particular iden-
tifier or data structure that may be usable for scheduling
threads in a multi-core processor or multiprocessor system.

Furthermore, the illustrative embodiments may be imple-
mented with respect to any type of data processing system.
For example, an illustrative embodiment described with
respect to a multi-core processor may be implemented in a
multiprocessor system within the scope of the invention. An
embodiment may refer to a processor or a core in a processor
as a core only as an example and not as a limitation on the
invention. As another example, an embodiment of the inven-
tion may be implemented with respect to any type of client
system, server system, platform, or a combination thereof.

The illustrative embodiments are further described with
respect to certain parameters, attributes, and configurations
only as examples. Such descriptions are not intended to be
limiting on the invention.

An implementation of an embodiment may take the form of
data objects, code objects, encapsulated instructions, appli-
cation fragments, distributed application or a portion thereof,
drivers, routines, services, systems—including basic /O sys-
tem (BIOS), and other types of software implementations
available in a data processing environment. For example,
Java® Virtual Machine (JVM®), Java® object, an Enterprise
Java Bean (EJB®), a servlet, or an applet may be manifesta-
tions of an application with respect to which, within which, or
using which, the invention may be implemented. (Java, JVM,
EIB, and other Java related terminologies are registered
trademarks of Sun Microsystems, Inc. in the United States
and other countries.)

An illustrative embodiment may be implemented in hard-
ware, software, or a combination thereof. The examples in
this disclosure are used only for the clarity of the description
and are not limiting on the illustrative embodiments. Addi-
tional or different information, data, operations, actions,
tasks, activities, and manipulations will be conceivable from
this disclosure for similar purpose and the same are contem-
plated within the scope of the illustrative embodiments.

The illustrative embodiments are described using specific
code, data structures, files, file systems, logs, designs, archi-
tectures, layouts, schematics, and tools only as examples and
are not limiting on the illustrative embodiments. Further-
more, the illustrative embodiments are described in some
instances using particular data processing environments only
as an example for the clarity of the description. The illustra-
tive embodiments may be used in conjunction with other
comparable or similarly purposed structures, systems, appli-
cations, or architectures.

Any advantages listed herein are only examples and are not
intended to be limiting on the illustrative embodiments. Addi-
tional or different advantages may be realized by specific

US 8,990,831 B2

5

illustrative embodiments. Furthermore, a particular illustra-
tive embodiment may have some, all, or none of the advan-
tages listed above.

With reference to the figures and in particular with refer-
ence to FIGS. 1 and 2, these figures are example diagrams of
data processing environments in which illustrative embodi-
ments may be implemented. FIGS. 1 and 2 are only examples
and are not intended to assert or imply any limitation with
regard to the environments in which different embodiments
may be implemented. A particular implementation may make
many modifications to the depicted environments based on
the following description.

With reference to FIG. 1, this figure depicts a block dia-
gram of a data processing system in which the illustrative
embodiments may be implemented is depicted. Data process-
ing system 100 may be a symmetric multiprocessor (SMP)
system including a plurality of processors 101,102, 103, and
104, which connect to system bus 106. For example, data
processing system 100 may be an IBM Power System®
implemented as a server within a network. (Power Systems is
a product and a trademark of International Business
Machines Corporation in the United States and other coun-
tries).

Alternatively, a single processor system may be employed.
The single processor may be a single-core processor or a
multi-core processor. Any of processors 101, 102, 103, and
104 may be a multi-core processor.

Also connected to system bus 106 is memory controller/
cache 108, which provides an interface to a plurality of local
memories 160-163. 1/O bus bridge 110 connects to system
bus 106 and provides an interface to I/O bus 112. Memory
controller/cache 108 and I/O bus bridge 110 may be inte-
grated as depicted.

Data processing system 100 is a logical partitioned data
processing system. Thus, data processing system 100 may
have multiple heterogeneous operating systems (or multiple
instances of a single operating system) running simulta-
neously. Each of these multiple operating systems may have
any number of software programs executing within it. Data
processing system 100 is logically partitioned such that dif-
ferent PCI 1/0 adapters 120-121, 128-129, and 136, graphics
adapter 148, and hard disk adapter 149 may be assigned to
different logical partitions. In this case, graphics adapter 148
connects for a display device (not shown), while hard disk
adapter 149 connects to and controls hard disk 150.

Thus, for example, suppose data processing system 100 is
divided into three logical partitions, P1, P2, and P3. Each of
PCI /O adapters 120-121, 128-129, 136, graphics adapter
148, hard disk adapter 149, each of host processors 101-104,
and memory from local memories 160-163 is assigned to
each of the three partitions. In these examples, memories
160-163 may take the form of dual in-line memory modules
(DIMMs). DIMMs are not normally assigned on a per DIMM
basis to partitions. Instead, a partition will get a portion of the
overall memory seen by the platform. For example, processor
101, some portion of memory from local memories 160-163,
and I/O adapters 120, 128, and 129 may be assigned to logical
partition P1; processors 102-103, some portion of memory
from local memories 160-163, and PCI I/O adapters 121 and
136 may be assigned to partition P2; and processor 104, some
portion of memory from local memories 160-163, graphics
adapter 148 and hard disk adapter 149 may be assigned to
logical partition P3.

Each operating system executing within data processing
system 100 is assigned to a different logical partition. Thus,
each operating system executing within data processing sys-
tem 100 may access only those /O units that are within its

25

30

35

40

45

50

55

6

logical partition. Thus, for example, one instance of the
Advanced Interactive Executive (AIM operating system may
be executing within partition P1, a second instance (image) of
the AIX operating system may be executing within partition
P2, and a Linux® or IBM-i® operating system may be oper-
ating within logical partition P3. (AIX and IBM-i are trade-
marks of International business Machines Corporation in the
United States and other countries. Linux is a trademark of
Linus Torvalds in the United States and other countries).

Peripheral component interconnect (PCI) host bridge 114
connected to I/O bus 112 provides an interface to PCI local
bus 115. A number of PCI input/output adapters 120-121
connect to PCI local bus 115 through PCI-to-PCI bridge 116,
PCI bus 118, PCI bus 119, I/O slot 170, and I/O slot 171.
PCI-t0-PCI bridge 116 provides an interface to PCI bus 118
and PCI bus 119. PCI1/O adapters 120 and 121 are placed into
1/0O slots 170 and 171, respectively. Typical PCI bus imple-
mentations support between four and eight /O adapters (i.e.
expansion slots for add-in connectors). Each PCI I/O adapter
120-121 provides an interface between data processing sys-
tem 100 and input/output devices such as, for example, other
network computers, which are clients to data processing sys-
tem 100.

An additional PCI host bridge 122 provides an interface for
an additional PCI local bus 123. PClI local bus 123 connects to
a plurality of PCI I/O adapters 128-129. PCI I/O adapters
128-129 connect to PCI local bus 123 through PCI-to-PCI
bridge 124, PCI bus 126, PCI bus 127, 1/O slot 172, and I/O
slot 173. PCI-to-PCI bridge 124 provides an interface to PCI
bus 126 and PCI bus 127. PCI I/O adapters 128 and 129 are
placedinto I/O slots 172 and 173, respectively. In this manner,
additional I/O devices, such as, for example, modems or
network adapters may be supported through each of PCI I/O
adapters 128-129. Consequently, data processing system 100
allows connections to multiple network computers.

A memory mapped graphics adapter 148 is inserted into
1/0slot 174 and connects to I/O bus 112 through PCI bus 144,
PCI-t0-PCI bridge 142, PCI local bus 141, and PCI host
bridge 140. Hard disk adapter 149 may be placed into [/O slot
175, which connects to PCI bus 145. In turn, this bus connects
to PCI-to-PCI bridge 142, which connects to PCI host bridge
140 by PCI local bus 141.

A PCThost bridge 130 provides an interface for a PCI local
bus 131 to connect to /O bus 112. PCI 1/O adapter 136
connects to 1/O slot 176, which connects to PCI-to-PCI bridge
132 by PCI bus 133. PCI-to-PCI bridge 132 connects to PCI
local bus 131. This PCI bus also connects PCI host bridge 130
to the service processor mailbox interface and ISA bus access
pass-through logic 194 and PCI-to-PCI bridge 132.

Service processor mailbox interface and ISA bus access
pass-through logic 194 forwards PCI accesses destined to the
PCI/ISA bridge 193. NVRAM storage 192 connects to the
ISA bus 196. Service processor 135 connects to service pro-
cessor mailbox interface and ISA bus access pass-through
logic 194 through its local PCI bus 195. Service processor 135
also connects to processors 101-104 via a plurality of JTAG/
12C busses 134. JTAG/I2C busses 134 are a combination of
JTAG/scan busses (see IEEE 1149.1) and Phillips 12C busses.

However, alternatively, JTAG/I2C busses 134 may be
replaced by only Phillips 12C busses or only JTAG/scan bus-
ses. All SP-ATTN signals of the host processors 101, 102,
103, and 104 connect together to an interrupt input signal of
service processor 135. Service processor 135 has its own
local memory 191 and has access to the hardware OP-panel
190.

When data processing system 100 is initially powered up,
service processor 135 uses the JTAG/12C busses 134 to inter-

US 8,990,831 B2

7

rogate the system (host) processors 101-104, memory con-
troller/cache 108, and I/O bridge 110. At the completion of
this step, service processor 135 has an inventory and topology
understanding of data processing system 100. Service pro-
cessor 135 also executes Built-In-Self-Tests (BISTs), Basic
Assurance Tests (BATs), and memory tests on all elements
found by interrogating the host processors 101-104, memory
controller/cache 108, and I/O bridge 110. Any error informa-
tion for failures detected during the BISTs, BATs, and
memory tests are gathered and reported by service processor
135.

If a meaningful/valid configuration of system resources is
still possible after taking out the elements found to be faulty
during the BISTs, BATs, and memory tests, then data pro-
cessing system 100 is allowed to proceed to load executable
code into local (host) memories 160-163. Service processor
135 then releases host processors 101-104 for execution of
the code loaded into local memory 160-163. While host pro-
cessors 101-104 are executing code from respective operating
systems within data processing system 100, service processor
135 enters a mode of monitoring and reporting errors. The
type of items monitored by service processor 135 include, for
example, the cooling fan speed and operation, thermal sen-
sors, power supply regulators, and recoverable and non-re-
coverable errors reported by processors 101-104, local
memories 160-163, and I/O bridge 110.

Service processor 135 saves and reports error information
related to all the monitored items in data processing system
100. Service processor 135 also takes action based on the type
of errors and defined thresholds. For example, service pro-
cessor 135 may take note of excessive recoverable errors on a
processor’s cache memory and decide that this is predictive of
a hard failure. Based on this determination, service processor
135 may mark that resource for deconfiguration during the
current running session and future Initial Program Loads
(IPLs). IPLs are also sometimes referred to as a “boot” or
“bootstrap”.

Data processing system 100 may be implemented using
various commercially available computer systems. For
example, data processing system 100 may be implemented
using IBM Power Systems available from International Busi-
ness Machines Corporation. Such a system may support logi-
cal partitioning using an AIX operating system, which is also
available from International Business Machines Corporation.

Those of ordinary skill in the art will appreciate that the
hardware depicted in FIG. 1 may vary. For example, other
peripheral devices, such as optical disk drives and the like,
also may be used in addition to or in place of the hardware
depicted. The depicted example is not meant to imply archi-
tectural limitations with respect to the illustrative embodi-
ments.

With reference to FIG. 2, this figure depicts a block dia-
gram of an example logical partitioned platform in which the
illustrative embodiments may be implemented. The hardware
in logical partitioned platform 200 may be implemented as,
for example, data processing system 100 in FIG. 1.

Logical partitioned platform 200 includes partitioned
hardware 230, operating systems 202, 204, 206, 208, and
platform firmware 210. A platform firmware, such as plat-
form firmware 210, is also known as partition management
firmware. Operating systems 202, 204, 206, and 208 may be
multiple copies of a single operating system or multiple het-
erogeneous operating systems simultaneously run on logical
partitioned platform 200. These operating systems may be
implemented using IBM-i, which are designed to interface
with a partition management firmware, such as Hypervisor.
IBM-i is used only as an example in these illustrative embodi-

30

40

45

50

8

ments. Of course, other types of operating systems, such as
AIX and Linux, may be used depending on the particular
implementation. Operating systems 202, 204, 206, and 208
are located in partitions 203, 205, 207, and 209.

Hypervisor software is an example of software that may be
used to implement partition management firmware 210 and is
available from International Business Machines Corporation.
Firmware is “software” stored in a memory chip that holds its
content without electrical power, such as, for example, read-
only memory (ROM), programmable ROM (PROM), eras-
able programmable ROM (EPROM), electrically erasable
programmable ROM (EEPROM), and nonvolatile random
access memory (nonvolatile RAM).

Additionally, these partitions also include partition firm-
ware 211, 213, 215, and 217. Partition firmware 211, 213,
215, and 217 may be implemented using initial boot strap
code, IEEE-1275 Standard Open Firmware, and runtime
abstraction software (RTAS), which is available from Inter-
national Business Machines Corporation. When partitions
203, 205, 207, and 209 are instantiated, a copy of boot strap
code is loaded onto partitions 203, 205, 207, and 209 by
platform firmware 210. Thereafter, control is transferred to
the boot strap code with the boot strap code then loading the
open firmware and RTAS. The processors associated or
assigned to the partitions are then dispatched to the partition’s
memory to execute the partition firmware.

Partitioned hardware 230 includes a plurality of processors
232-238, a plurality of system memory units 240-246, a plu-
rality of input/output (I/O) adapters 248-262, and a storage
unit 270. Each of the processors 232-238, memory units
240-246, NVRAM storage 298, and /O adapters 248-262
may be assigned to one of multiple partitions within logical
partitioned platform 200, each of which corresponds to one of
operating systems 202, 204, 206, and 208.

Partition management firmware 210 performs a number of
functions and services for partitions 203, 205,207, and 209 to
create and enforce the partitioning of logical partitioned plat-
form 200. Partition management firmware 210 is a firmware
implemented virtual machine identical to the underlying
hardware. Thus, partition management firmware 210 allows
the simultaneous execution of independent OS images 202,
204, 206, and 208 by virtualizing all the hardware resources
of'logical partitioned platform 200.

Service processor 290 may be used to provide various
services, such as processing of platform errors in the parti-
tions. These services also may act as a service agent to report
errors back to a vendor, such as International Business
Machines Corporation. Operations of the different partitions
may be controlled through a hardware management console,
such as hardware management console 280. Hardware man-
agement console 280 is a separate data processing system
from which a system administrator may perform various
functions including reallocation of resources to different par-
titions.

The hardware in FIGS. 1-2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of certain hardware depicted in FIGS.
1-2. An implementation of the illustrative embodiments may
also use alternative architecture for managing partitions with-
out departing from the scope of the invention.

With reference to FIG. 3, this figure depicts a block dia-
gram of an example data processing system with respect to
which an illustrative embodiment may be implemented. Data
processing system 302 may be implemented using data pro-

US 8,990,831 B2

9

cessing system 100 in FIG. 1. Processors or cores 304 and 306
may each be implemented using any of processors 101-104 in
FIG. 1.

In one embodiment, processors 304 and 306 may be cores
of'a multi-core processor. Scheduler 308 may be a scheduler
implemented in any combination of hardware and software in
data processing system 302. Scheduler 308 may schedule
threads 310 to execute on core 304, core 306, or both, using
scheduling discipline 312. Some examples of scheduling dis-
cipline 312 include first-come-first-served (FCFS), round
robin (RR), multi-level feedback queuing (MLFQ), and pri-
ority queues (PQ).

Core 304 has core attributes 314 associated therewith. Core
306 has core attributes 316 associated therewith. Core
attributes 314 and 316 may describe one or more attributes of
their respective cores. Some example core attributes in core
attributes 314 and 316 may be voltage, frequency, maximum
SMT level, special hardware capability, temperature, and
other suitable core characteristics that describe the operating
conditions of a corresponding core at a given time. Core
attributes 314 and 316 may be similar to one another, or be
distinguishable from one another in one or more attributes
contained therein.

Thread attributes 318 may be attributes associated with a
thread in threads 310. In other words, each thread in threads
310 may have a set of thread attributes 318. Some examples of
thread attributes may include a desired frequency to provide
the needed performance, tolerance to resource contention
expressed as a desired SMT level, a desired level of energy
consumption expressed as a voltage, and requirements to
specific hardware resources. The invention recognizes that a
user, system administrator, system software, application soft-
ware or any other suitable entity decide the attributes of a
software thread. Threads may have different attributes,
including threads that are within the same application.

With reference to FIG. 4, this figure depicts a block dia-
gram of a scheduling framework for scheduling threads in a
multi-core processor system in accordance with an illustra-
tive embodiment. Framework 402 may be implemented, such
as in an application, to operate in conjunction with a sched-
uler, such as scheduler 308 in FIG. 3.

Framework 402 accepts scheduling discipline input 404.
Scheduling discipline input 404 may provide to framework
402 a scheduling discipline in use, such as scheduling disci-
pline 312 in FIG. 3.

Framework 402 includes thread ordering queue 403.
Queue 403 is used for ordering or sorting the threads that are
to be scheduled. The ordering or sorting in queue 403 may
utilize thread attributes and/or other factors as will become
clearer in the description of FIG. 5.

Framework 402 accepts thread attributes input 406. Thread
attributes input 406 may provide to framework 402 attributes
of one or more threads to be scheduled on a core, such as some
or all of thread attributes 318 in FIG. 3.

Framework 402 also accepts constraint or compatibility
model 408. A constraint or compatibility model, such as
model 408, may be any logic, code, rule, specification, or
policy, that may affect scheduling certain threads simulta-
neously on a core, scheduling a thread with certain thread
attributes on a core, scheduling a particular thread on a par-
ticular core, scheduling cores such that all threads on a certain
core must run at the same frequency, or any other combination
of threads and cores at a given time.

Framework 402 outputs thread schedule 410. Schedule 410
is a schedule for executing one or more threads on one or more
cores in a given period. Schedule 410 is produced by frame-

25

40

45

55

10

work 402 by taking into account scheduling discipline 404,
some or all of thread attributes 406, and any model 408 that
may be applicable.

For example, a scheduling discipline may be that threads
are to be scheduled in the order of their priority. Accordingly
schedule 410 produced by framework 402 will not schedule a
thread of a certain priority to execute while omitting a thread
of a higher priority from the schedule.

As another example, a thread’s thread attribute may be that
the thread is an I/O intensive thread. In one embodiment, such
as according to one example model 408, framework 402 may
not schedule the thread with another thread having a similar
attribute.

In another embodiment, a thread’s thread attribute may be
that the thread prefers to execute in SM'T-4 mode. According
to another example model 408, framework may schedule the
thread with another thread having a similar or the same
attribute.

As another example, a model may specify a threshold or
tolerance value for a core attribute, such as for example,
frequency. In one embodiment, framework 402 may schedule
two threads for simultaneous execution such that their respec-
tive desirable frequency attributes are not more than the tol-
erance value apart from the core’s frequency.

The models and the framework’s operation using those
models and the various inputs are only described as examples
for the clarity of some embodiments of the invention. More
examples are described elsewhere in the disclosure. The
examples are not intended to be limiting on the invention.
Many other constraint or compatibility models that may oper-
ate on many types of core or thread attributes will become
apparent from this disclosure to those of ordinary skill in the
art and the same are contemplated within the scope of the
invention.

With reference to FIG. 5, this figure depicts a block dia-
gram of an example ordering structure in a scheduling frame-
work in accordance with an illustrative embodiment. Queue
502 may be implemented as thread ordering queue 403 in
FIG. 4.

Queue 502 may be ordered using any number of factors,
including but not limited to any number of thread attributes.
As an example, queue 502 is depicted as a three-dimensional
queue because queue 502 is sorted using three factors. The
three example factors (axes) used for ordering queue 502 are
frequency 504, SMT 506, and priority 508.

Queue 502 can be further divided, sub-organized, or sub-
ordered using sub-queues 510. A sub-queue 510 in queue 502
includes those threads whose attributes have the same
value(s) on each of the various axes that describe the sub-
queue’s coordinates in the space of those axes. Queue 502,
and consequently sub-queues 510 can be described and
ordered in n-dimensions using n factors. Not all factors need
correspond to a thread attribute.

In the depicted example, frequency 502 may be the fre-
quency at which a thread desires to operate. In other words,
the desirable frequency for executing a thread may be deter-
mined from one of the thread attributes associated with the
thread. SMT 504 may be the SMT level at which a thread
desires to operate. For example, a thread may desire to oper-
ate on SMT level 8, meaning that the thread may prefer at
most seven more threads executing concurrently with the
thread. The desirable SMT level for a thread may be deter-
mined from one of the thread attributes associated with the
thread. Priority 508 may be the priority at which the thread is
to be executed. Priority 508 of a thread may be determined
from a thread attribute of the thread.

US 8,990,831 B2

11

The values of the relevant thread attributes can then be used
to position the thread in a suitable sub-queue 510 along any
number of axes.

For example, the sub-queue depicted as (0, 2, 4) holds all
the threads that have priority attribute 0, desirable frequency
of 2 Gigahertz (Ghz), and desirable SMT level of 4. Under
certain circumstances at certain times, a sub-queue may
include zero, one, or any other number of threads.

In some cases, such as in gang scheduling, a desirable
attribute value for a thread attribute may be determined from
a thread attribute of another thread. Gang scheduling is the
notion that if a particular thread is scheduled, another particu-
lar thread must also be scheduled. In other words, the two
threads form a gang of threads that have to be co-scheduled.
Under such a circumstance, as an example, even though the
second thread may have a different SMT level preference than
the SMT level preference of the first thread, the second thread
may be scheduled using the first thread’s SMT level prefer-
ence.

Queue 502, organized in this manner using any number of
axes, can then be utilized by a scheduling framework of an
embodiment for scheduling threads. For example, a con-
straint or compatibility model may allow the threads in those
sub-queues to be scheduled together that are of the same
priority but proximate to a particular frequency value within
a specified tolerance.

For example, threads in sub-queues (0, 2, 4), (0, 1.8, 4), and
(0, 1.8, 8) may be co-scheduled (core capacity permitting) if
afrequency tolerance value is 0.25 GHz. As another example,
threads in sub-queues (0, 1.8, 4) and (0, 1.8, 8) may be
co-scheduled (core capacity permitting) regardless of a fre-
quency tolerance value. Such co-scheduling by the frame-
work may be possible because SMT-8 threads will generally
have more than desired resources available to them when
co-scheduled with SMT-4 threads, unless the SMT-4 and
SMT-8 threads compete for the same resources.

With reference to FIG. 6, this figure depicts a flowchart of
one example scheduling operation of a framework for sched-
uling threads in multi-core processors in accordance with an
illustrative embodiment. Process 600 may be implemented in
a scheduling framework, such as framework 402 in FIG. 4.

Process 600 begins by selecting a first thread according to
a scheduling discipline (step 602). Process 600 creates a
bundle of threads with the first thread as the leader (step 604).
Process 600 determines the core attributes according to the
leader thread’s attributes (step 606). For example, a core’s
frequency and voltage may be set to the respective values of
the frequency and voltage attributes of the leader thread.

Process 600 determines whether another thread, such as in
a sub-queue in the scheduling discipline order, is to be sched-
uled whose attributes are within a tolerance value of the core
attributes as set by the leader thread (step 608). The determi-
nation of step 608 may be performed using a constraint or
compatibility model, such as model 408 in FIG. 4.

By co-scheduling a thread under conditions that are difter-
ent within the tolerance value from those desired for the
thread, the thread may not perform as efficiently as desired.
However, desirable overall utilization levels of the core and
the system, power-conservation targets, and licensing con-
straints may be achieved by such co-scheduling.

It no such thread is ready for execution (“No” path of step
608), process 600 proceeds to step 616. If such a thread is
available (“Yes” path of step 608), process 600 selects the
thread to add to the bundle of threads to co-schedule (step
610).

Process 600 determines whether the bundle is sufficient to
utilize the core and any other resources at a designated utili-

20

25

30

40

45

60

65

12

zation level (step 612). For example, in a given data process-
ing system, a core utilization of eighty percent may be a
desirable utilization level. In another data processing system,
a forty percent I/O cycles and sixty percent computing cycles
may be a desirable utilization level. The utilization level may
be specified with respect to any resource, including but not
limited to the core, and in any manner suitable for an instal-
lation.

If the bundle is sufficient to achieve the designated utiliza-
tion level (“Yes” path of step 612), process 600 proceeds to
step 616. If the bundle is not sufficient to achieve the desig-
nated utilization level (“No” path of step 612), process 600
determines whether more threads in the discipline order can
be co-scheduled with the threads in the bundle (step 614).

If more threads can be co-scheduled, such as from adjacent
sub-queues (“Yes” path of step 614), process 600 returns to
step 608. If no more threads can be co-scheduled (“No” path
of step 614), process 600 schedules the bundle for execution
on the core (step 616). Process 600 may end thereafter.

With reference to FIG. 7, this figure depicts a flowchart of
another example scheduling operation of a framework for
scheduling threads in multi-core processors in accordance
with an illustrative embodiment. Process 700 may be imple-
mented in a scheduling framework, such as framework 402 in
FIG. 4.

Process 700 begins by selecting a first thread according to
a scheduling discipline (step 702). Process 700 creates a
bundle of threads with the first thread as the leader (step 704).
Process 700 determines the core attributes according to the
leader thread’s attributes (step 706).

Process 700 determines whether another thread, such as in
a sub-queue in the scheduling discipline order, can be sched-
uled such that the thread’s attributes are less than or equal to
the corresponding core attributes as set by the leader thread
(step 708). The determination of step 708 may be performed
using a constraint or compatibility model, such as model 408
in FIG. 4.

For example, the leader thread may set the core to SMT-4.
Another thread may indicate that the thread can operate at the
voltage and frequency set by the leader but desired SMT-16.
If'the SMT-16 thread can desirably allow fifteen other threads
to execute concurrently, the thread should demonstrate at
least the desired performance if executed with only three
other concurrent threads in SMT-4. Thus, the SMT-16 thread
can be selected for co-scheduling with the SMT-4 thread in
step 708. Thus, the higher the SMT level, the lower the value
of the corresponding core or thread attribute.

If no such thread is ready for execution (“No” path of step
708), process 700 proceeds to step 716. If such a thread is
available (“Yes” path of step 708), process 700 selects the
thread to add to the bundle of threads to co-schedule (step
710).

Process 700 determines whether the bundle is sufficient to
utilize the core and any other resources at a designated utili-
zation level (step 712). If the bundle is sufficient to achieve the
designated utilization level (“Yes” path of step 712), process
700 proceeds to step 716. If the bundle is not sufficient to
achieve the designated utilization level (“No” path of step
712), process 700 determines whether more threads in the
discipline order can be co-scheduled with the threads in the
bundle (step 714).

If more threads can be co-scheduled, such as from adjacent
sub-queues (“Yes” path of step 714), process 700 returns to
step 708. If no more threads can be co-scheduled (“No” path
of step 714), process 700 schedules the bundle for execution
on the core (step 716). Process 700 may end thereafter.

US 8,990,831 B2

13

With reference to FIG. 8, this figure depicts a flowchart of
another example scheduling operation of a framework for
scheduling threads in multi-core processors in accordance
with an illustrative embodiment. Process 800 may be imple-
mented in a scheduling framework, such as framework 402 in
FIG. 4.

Process 800 begins by selecting a first thread according to
a scheduling discipline (step 802). Process 800 creates a
bundle of threads with the first thread as the leader (step 804).
Process 800 determines the core attributes according to the
leader thread’s attributes (step 806).

Process 800 determines whether another thread, such as in
a sub-queue in the scheduling discipline order, can be sched-
uled such that the thread’s attributes are diverse from the
corresponding attributes of the leader thread or of the other
members of the bundle (step 808). The determination of step
808 may be performed using a constraint or compatibility
model, such as model 408 in FIG. 4.

For example, a thread in the bundle, such as the leader
thread, may be an I/O intensive thread. A second thread that is
also I/O intensive should not be co-scheduled according to
this model because the two threads will compete for I/O when
concurrently executed. A third thread may be computation
intensive without much I/O. the thread attributes of the third
thread and the first thread are therefore diverse from one
another. The third thread if co-scheduled with the first thread
will spread the utilization over different or diverse types of
operations or resources.

It no such thread is ready for execution (“No” path of step
808), process 800 proceeds to step 816. If such a thread is
available (“Yes” path of step 808), process 800 selects the
thread to add to the bundle of threads to co-schedule (step
810).

Process 800 determines whether the bundle is sufficient to
utilize the core and any other resources at a designated utili-
zation level (step 812). Ifthe bundle is sufficient to achieve the
designated utilization level (“Yes” path of step 812), process
800 proceeds to step 816. If the bundle is not sufficient to
achieve the designated utilization level (“No” path of step
812), process 800 determines whether more threads in the
discipline order can be co-scheduled with the threads in the
bundle (step 814).

If more threads can be co-scheduled, such as from adjacent
sub-queues (“Yes” path of step 814), process 800 returns to
step 808. If no more threads can be co-scheduled (“No” path
of step 814), process 800 schedules the bundle for execution
on the core (step 816). Process 800 may end thereafter.

With reference to FIG. 9, this figure depicts a flowchart of
another example scheduling operation of a framework for
scheduling threads in multi-core processors in accordance
with an illustrative embodiment. Process 900 may be imple-
mented in a scheduling framework, such as framework 402 in
FIG. 4.

Process 900 begins by selecting a first thread according to
a scheduling discipline (step 902). Process 900 creates a
bundle of threads with the first thread as the leader (step 904).
Process 900 determines the core attributes according to the
leader thread’s attributes (step 906).

Process 900 determines whether another thread, such as in
a sub-queue in the scheduling discipline order, can be sched-
uled such that co-scheduling the thread in the bundle satisfies
a compatibility policy or constraint for the bundle (step 908).
The determination of step 908 may be performed using a
constraint or compatibility model, such as model 408 in FIG.
4.

Determinations of steps 608, 708, and 808 in FIGS. 6, 7,
and 8 respectively are some examples of the policy or con-

10

15

20

25

30

35

40

45

50

55

60

65

14

straint of step 908. Any other policy or constraint may be
similarly employed in step 908 within the scope of the inven-
tion. For example, a gang scheduling constraint may allow or
prevent co-scheduling certain threads.

As another example, a thread attribute may indicate a
thread’s affinity to a core, memory, or another resource acces-
sible through a core. Threads with similar affinities may be
co-scheduled according to a policy, capacity permitting.
Many other constraints or policies will be apparent from this
disclosure to those of ordinary skill in the art and the same are
contemplated within the scope of the invention.

If no such thread is ready for execution (“No” path of step
908), process 900 proceeds to step 916. If such a thread is
available (“Yes” path of step 908), process 900 selects the
thread to add to the bundle of threads to co-schedule (step
910).

Process 900 determines whether the bundle is sufficient to
utilize the core and any other resources at a designated utili-
zation level (step 912). If the bundle is sufficient to achieve the
designated utilization level (“Yes” path of step 912), process
900 proceeds to step 916. If the bundle is not sufficient to
achieve the designated utilization level (“No” path of step
912), process 900 determines whether more threads in the
discipline order can be co-scheduled with the threads in the
bundle (step 914).

If more threads can be co-scheduled, such as from adjacent
sub-queues (“Yes” path of step 914), process 900 returns to
step 908. If no more threads can be co-scheduled (“No” path
of step 914), process 900 schedules the bundle for execution
on the core (step 916). Process 900 may end thereafter.

The components in the block diagrams and the steps in the
flowcharts described above are described only as examples.
The components and the steps have been selected for the
clarity of the description and are not limiting on the illustra-
tive embodiments of the invention. For example, a particular
implementation may combine, omit, further subdivide,
modify, augment, reduce, or implement alternatively, any of
the components or steps without departing from the scope of
the illustrative embodiments. Furthermore, the steps of the
processes described above may be performed in a different
order within the scope of the invention.

Thus, a computer implemented method is provided in the
illustrative embodiments for a framework for scheduling
threads in a multi-core processor or multiprocessor system.
Using an embodiment of the invention, a multi-core or mul-
tiprocessor computing environment may be able to improve
the utilization of available cores and other computing
resources. Using an embodiment, conflicts between comput-
ing system power management and per-core licensing struc-
tures may be resolved more efficiently than is possible with
current scheduling methods.

A certain number of cores, processors, attributes, or mod-
els are depicted and described in this disclosure only as an
example and are not limiting on the invention. Any number or
variation of such artifacts may be used within the scope of the
invention.

Furthermore, a processor may execute any number of
threads, a thread may have any number or type thread
attributes. A compatibility model or constraint may employ
any number or types of factors, including but not limited to
thread attributes. A policy may be created in any suitable
manner to implement a model.

A scheduling discipline may employ any method of order-
ing the threads. Ordering by priority associated with a thread
is one example way of ordering within the scope of the inven-
tion without implying a limitation.

US 8,990,831 B2

15

The invention can take the form of an entirely hardware
embodiment, entirely software embodiment, or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in soft-
ware or program code, which includes but is not limited to
firmware, resident software, and microcode.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer-readable medium can be any tangible
apparatus that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
a rigid magnetic disk, and an optical disk. Current examples
of optical disks include compact disk-read only memory
(CD-ROM), compact disk-read/write (CD-R/W) and DVD.

Further, a computer storage medium may contain or store a
computer-readable program code such that when the com-
puter-readable program code is executed on a computer, the
execution of this computer-readable program code causes the
computer to transmit another computer-readable program
code over a communications link. This communications link
may use a medium that is, for example without limitation,
physical or wireless.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage media, and cache memories, which provide tempo-
rary storage of at least some program code in order to reduce
the number of times code must be retrieved from bulk storage
media during execution.

A data processing system may act as a server data process-
ing system or a client data processing system. Server and
client data processing systems may include data storage
media that are computer usable, such as being computer
readable. A data storage medium associated with a server data
processing system may contain computer usable code. A
client data processing system may download that computer
usable code, such as for storing on a data storage medium
associated with the client data processing system, or for using
in the client data processing system. The server data process-
ing system may similarly upload computer usable code from
the client data processing system. The computer usable code
resulting from a computer usable program product embodi-
ment of the illustrative embodiments may be uploaded or
downloaded using server and client data processing systems
in this manner.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

10

—_
w

20

25

30

35

40

45

50

55

60

65

16

The description ofthe present invention has been presented
for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to explain the principles of
the invention, the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are suited
to the particular use contemplated.
What is claimed is:
1. A computer implemented method for scheduling threads
in a data processing system having a multi-core processor, the
computer implemented method comprising:
selecting a first thread according to an order in a scheduling
discipline, the first thread being a thread of an applica-
tion executing in the data processing system, the first
thread forming the leader thread in a bundle of threads;

determining a value of a core attribute in a set of core
attributes according to a corresponding thread attribute
in a set of thread attributes associated with the leader
thread;

determining whether a second thread can be added to the

bundle of threads such that the bundle including the
second thread will satisfy a policy;

adding, responsive to the determining being affirmative

that the second thread can be added, the second thread to
the bundle;

forming a second bundle of threads using a third thread and

a fourth thread, the threads in the bundle of threads have
a first value of the thread attribute and the threads in the
second bundle of threads have a second value of the
thread attribute, wherein the first and the second values
are within a tolerance of the core attribute;

concluding that co-scheduling all threads in the bundle

using a core of the multi-core processor does not comply
with a condition on using the core;

determining, responsive to the concluding that co-sched-

uling all threads in the bundle and the second bundle
using the core of the multi-core processor complies with
the condition on using the core; and

scheduling, responsive to determining that the co-schedul-

ing all threads in the bundle and the second bundle
complies with the condition, the bundle and the second
bundle for co-execution using the core of the multi-core
processor.

2. The computer implemented method of claim 1, wherein
the policy is a compatibility policy, the compatibility policy
comprising:

determining whether a thread attribute in the set of thread

attributes of the second thread is within a tolerance value
of a corresponding core attribute in the set of the core
attributes as set by the leader thread.

3. The computer implemented method of claim 1, wherein
the policy is a compatibility policy, the compatibility policy
comprising:

determining whether a value of a thread attribute in the set

of thread attributes of the second thread is at most equal
to a value of a corresponding core attribute in the set of
the core attributes as set by the leader thread.

4. The computer implemented method of claim 1, wherein
the policy is a compatibility policy, the compatibility policy
comprising:

determining whether a value of a thread attribute in the set

of thread attributes of the second thread is identical to a
value of a corresponding core attribute in the set of the
core attributes as set by the leader thread.

US 8,990,831 B2

17

5. The computer implemented method of claim 1, wherein
the policy is a compatibility policy, the compatibility policy
comprising:

determining whether a thread attribute in the set of thread

attributes of the second thread is diverse from a corre-
sponding thread attribute of another thread in the bundle
of threads.

6. The computer implemented method of claim 1, further
comprising:
determining whether the bundle includes a number of
threads that will utilize a resource in the data processing
system at a designated utilization level, wherein the
executing the bundle is responsive to the bundle includ-
ing such number of threads.

7. The computer implemented method of claim 6, wherein
the resource is a core in the multi-core processor.

8. The computer implemented method of claim 1, further
comprising:

10

15

18

determining according to the order of the scheduling dis-
cipline whether a third thread can be added to the bundle
of threads such that the bundle including the third thread
will satisfy the policy; and

adding, responsive to the bundle satisfying the policy, the

third thread to the bundle.

9. The computer implemented method of claim 1, wherein
the core attribute is one of (i) voltage, (i) frequency, and (iii)
simultaneous multi-threading (SMT) level, at which the core
will operate for executing the bundle of threads.

10. The computer implemented method of claim 1,
wherein the order is an order of priority of threads.

11. The computer implemented method of claim 1,
wherein the scheduling discipline is round-robin scheduling.

12. The computer implemented method of claim 1,
wherein the data processing system having the multi-core
processor is a data processing system having a multiprocessor
system and a core of the multi-core processor is a separate
processor.

